
schließen. Das ist dramatisch, das sind Zustände, das ist Wildwest, 
das können wir so nicht dulden und nicht tolerieren als demokra-
tische Gesellschaft, deshalb ist es wirklich wichtig, dass wir hier 
vorangehen und sagen, wir brauchen dafür klare Regelungen.

Gemeinwohl nicht IT-Lobbyisten überlassen

Wir wollen neue und innovative Wege gehen, das sollte auch der 
Staat im Sinne des Gemeinwohls, mit neuen Bümdnispartnern, 
wie beispielsweise Onlineplattform-Genossenschaften, weil da 

ist das dann ganz anders gelagert, da haben die Beschäftigten 
selbst die Kontrolle über die Gestaltung dieser Plattformen und 
die Regularien. Der Staat sollte für soziale Standards Sorge tra-
gen und sich auch um die künftige Finanzierung der Daseinsvor-
sorge kümmern. Auch da möchte ich kurz an das gestrige Re-
ferat anknüpfen und sagen ja, das ist sehr wichtig, dass wir uns 
auch um Steuern kümmern insofern das Modell Tax-by-Design 
auch im Kopf haben. Die Persönlichkeitsrechte sind elementare 
Voraussetzungen für die Demokratie, die spezifische Machta-
symmetrie zwischen Arbeitgebern und Arbeitnehmern erfordern 
ein eigenes Beschäftigtendatenschutzgesetz.

FIfF-Konferenz 2018

Protective Optimization Technologies (POT):  
The revolution will not be optimized?

Verschriftlichung des Vortrags von Seda Gürses1

In the 1990s, software engineering shifted from packaged software and PCs to services and clouds, enabling distributed architectures 
that incorporate real-time feedback from users. In the process, digital systems became layers of technologies metricized under the 
authority of objective functions.

These functions drive selection of software features, service integration, cloud usage, user interaction and growth, customer service, 
and environmental capture, among others. Whereas information systems focused on storage, processing and transport of informa-
tion, and organizing knowledge – with associated risks of surveillance – contemporary systems leverage the knowledge they gather 
to not only understand the world, but also to optimize it, seeking maximum extraction of economic value through the capture and 
manipulation of people’s activities and environments. The ability of these optimization systems to treat the world not as a static 
place to be known, but as one to sense and co-create, poses social risks and harms such as social sorting, mass manipulation, asym-
metrical concentration of resources, majority dominance, and minority erasure. In the vocabulary of optimization, these harms arise 
due to choosing inadequate objective functions. During the talk, I will provide an account of what we mean by optimization systems, 
detail their externalities and make a proposition for Protective Optimization Technologies.

Prolog: Funding matters

Zunächst eine kleine Ankündigung: Wir haben kürzlich eine Kritik 
an der Auswahl der privaten Sponsoren für Privacy-Konferenzen 
formuliert, die mittlerweile in vielen Ländern sehr üblich geworden 
ist. Wir haben mit einem eindeutigen Beispiel angefangen: Palantir 
ist bekannt dafür, Überwachungssysteme für Polizei- und Geheim-
dienstbehörden zu entwickeln, und ist einer der Hauptsponsoren 
der Amsterdam Privacy Conference. Wir haben die Organisato-
ren gebeten, das zu ändern. Bisher haben wir keine befriedigende 
Antwort erhalten. Wir wollen die Kritik ausweiten, ausgehend von 
Palantir, wo das Problem offensichtlich ist. Ebenso gibt es berech-
tigte Einwände gegen Google, Facebook, Amazon und zahlreiche 
andere Sponsoren im Kontext von Privacy-Konferenzen. Wir müs-
sen eine breite Diskussion darüber führen. Mittlerweile haben wir 
über 200 Unterschriften. Sie sind eingeladen, das heute auch zu 
unterzeichnen oder einfach die Diskussion auch in Deutschland 
fortzuführen, wo es Konferenzen gibt, die von problematischen 
Zusammenstellungen von Sponsoren getragen werden.

Zusammenfassung

Es geht wesentlichen um drei Punkte: (1) Ich werde differen-
zieren, was Künstliche Intelligenz in der Wissenschaft, auf dem 

Markt und in der Technologiepolitik ist. Für die letzten beiden 
möchte ich betonen, dass hier in der Vergangenheit schon viele 
Investitionen in beliebige Technologien gemacht worden sind. 
Es gibt also ein großes Angebot an Investitionen und es es wird 
versucht, durch die Technologiepolitik einen Bedarf zu schaffen. 
Es ist sozusagen eine umgekehrte Ökonomie. (2) Wir hören seit 
60 Jahren, dass Künstliche Intelligenz kommt und die Welt än-
dert, und ich habe das Gefühl, dass das, was als Künstliche In-

erschienen in der FIfF-Kommunikation,
herausgegeben von FIfF e.V. - ISSN 0938-3476

www.fiff.de

49FIfF-Kommunikation 1/19

#
FI

fF
K

o
n
1

8



telligenz bezeichnet wird, sich komplett geändert hat. Es wird 
immer gesagt, Künstliche Intelligenz kommt, aber es ist immer 
etwas anderes, was kommt. Das führt zu einer Art von morali-
scher Panik, so dass Städte und Institutionen und Staaten immer 
mehr Geld investieren, damit diese Investitionen überhaupt er-
folgreich werden. Zudem wird in den Künstliche-Intelligenz-Dis-
kussionen, nicht in der Wissenschaft, aber in der Technologie-
politik, immer von abstrakten Technologien gesprochen. (3) Ich 
werde heute die Perspektive auf diese Technologien mit einem 
Blick auf den Wandel der Praxis der Softwareentwicklung be-
leuchten. Ich werde nicht diskutieren was Künstliche Intelligenz 
und diese abstrakten Technologien sind, aber ich werde fragen: 
Wie sieht Softwareentwicklung aus, wie hat sie sich verändert 
und wie hängt das damit zusammen, was jetzt Künstliche In-
telligenz genannt wird? Ich werde zeigen, dass wir mittlerweile 
sehr datenintensive Services haben: Software wird nicht mehr 
als Produkt, sondern als Service angeboten werden, Services, die 
dann innerhalb der Logik von Optimierung funktionieren.

Es geht hier um die Optimierung aller Software-Umgebungen 
und Populationen. Wir müssen ausgiebig darüber diskutieren. 
Ich werde mich hier auf die externen Kosten der Optimierun-
gen konzentrieren. Jedes optimierte System birgt externe Kos-
ten, Externalitäten, die durch die Optimierung entstehen. Diese 
sollten einerseits internalisiert werden, das heißt Technologiefir-
men sollten diese Kosten tragen, andererseits sollten wir als Nut-
zer auch von außen Widerstand leisten können. Die Idee von 
POTs, Protective Optimization Technologies, baut auf die Idee 
von PETs auf, Privacy Enhancing Technologies. Analog zur Idee, 
Werkzeuge zu entwickeln, die Nutzer befähigt, ihre Privacy so-
zusagen selbst schützen zu können, sollen Nutzer sich auch vor 
den durch Optimierungen verursachten Externalitäten schützen 
können. Wir wissen, dass solche Schutzmechanismen nicht re-
volutionär sind, und die strukturellen Probleme von Daten und 
Optimierungen nicht völlig lösen, aber sie sind ein hilfreicher 
und wichtiger Zwischenschritt auf dem Weg zu einer Lösung.

Introduction: Artificial Intelligence –  
waiting for Godot

Waiting for Artificial Intelligence is like waiting for Godot. It is 
about creating a demand for an investment that is in the process 
of creating an immense supply. Artificial Intelligence has been 
coming for 60 years. However, what we referred to Artificial Intel-
ligence 60 years ago is different from its manifestation today. And 
probably this will hold for whatever is claimed to be the Artificial 
Intelligence in the future. And we have not only been waiting for 
Artificial Intelligence. Consortia of tech companies first asked us 
in the last 20 years to expect things like the Internet of Things. 
That was in the beginning of the 2000s, for those who are old 
enough, and it was following the trends in the 90s in research labs 
like Xerox Parc where people said we will not get the Internet of 
Things, but we will get Ubiquitous Computing. What we instead 
got, instead of Ubiquitious Computing, was Social Networks.

First, governments, companies, and journalists alike argued that 
Social Networks would lead to revolutions and bring to us de-
mocracy – and also bring democracy even in the authoritarian 
world. In the last three years now we hear the Social Networks 
bring authoritarians to democracies. So there is an underlying 

logic to the argument that there is a technology that is unstop-
pable, inevitable, revolutionary and we should prepare ourself 
for receiving it.

Demand for technological solutions is constructed

First of all, what is expressed as unstoppable technological change 
is in fact a story about companies already investing in a technol-
ogy, meaning they are already creating a supply. The objective of 
waiting for the technology is to create an expectation that its ar-
rival is inevitable, and its reception is welcome – a necessary con-
dition for economic and social progress and therewith creating a 
demand. In the current case of Artificial Intelligence the argument 
is that if your health system, your city, your car, your policing are 
not “smart”, i. e. not made “smart” with Artificial Intelligence, 
you are going to fall behind. Hence cities, health and educational 
institutions demand it and do so without much regulation.

So the moral panic that is then surrounding this promised tech-
nology, Artificial Intelligence, is part of creating a demand. We 
are told that Artificial Intelligence will deliver an industrial revolu-
tion, a market revolution. However, it may also cause some prob-
lems. These include for example, according to A.I. Now, that we 
might lose jobs, experience bias and exclusion, have an infringe-
ment upon rights and liberties and may have problems with safe-
ties in critical infrastructures – a short, but very worrying list.

However, this is a list that again creates moral panic. And re-
markably this moral panic is cultivated with industry funded 
think tanks, which have apparent ties with universities who 
make them look very neutral. Both start from the assumption 
that these technologies will come, but only with limited side ef-
fects. These research centers and think tanks ask us not only to 
expect these technologies, but to imagine how we will live with 
them once they arrive, how they should be tweaked to better 
fit our lifes. But it’s only about tweaking, and never about ques-
tioning whether we should get these technologies or not.

One of the recent manifestations of this approach is an effort 
to achieve algorithmic fairness which would take too much time 
right now to elaborate in detail. But we clearly see in the algorith-
mic fairness that it is merely about tweaking algorithms, but not 
actually questioning whether the introduction of some of these 
systems will cause inequalities which are much grander than 
what can be corrected by any tools. Well, it is signifcant in all of 
these framings of artificial intelligence coming, that they allow 
those engaged in the topic not to name any actual actors who 
are engaged in the political economy of Artificial Intelligence.

Artificial Intelligence is an abstraction, very much like algorithms, 
big data and internet of things are all abstractions. Abstraction 
also suggests nobody is pushing for them, they just come from 
the sky, they fall upon us. In this notion Artificial Intelligence 
can be abstractly discussed and criticised as if technologies are 
neutral and are only colored by the shortcomings of the world 
around them. This is manifest in statements like “Algorithms are 
not biased. They do not discriminate, but the data sets represent 
our bias as a society and the algorithms reflect them back to us.” 
Algorithms in that sense are presented like neutral mirrors. They 
just present us to ourselves. It is conceived as an accident rather 

50 FIfF-Kommunikation 1/19

#
FIfFK

o
n
1

8



than the condition enabled by the ways in which we produce 
knowledge and technology.

As an alternative to this abstraction and as an alternative to 
this idea that artificial intelligence is inevitable and it’s coming, I 
want to look at the past. I propose that we analyze software en-
gineering practices and systems developments which are made 
possible through concrete social economic production decisions. 
I locate some of the origins of the current discussions on Artifi-
cial Intelligence in the shifts of software engineering from shrink 
wrap software and Personal Computers to services and clouds 
which allow software developers and companies to incorporate 
real-time feedback from users and their environments in the 
business and software development processes.

So here are the three shifts that we see at least since the 1990s. 
If you have been in the computer business since the 1960s you 
will actually see a pendulum where we used to have mainframes 
and services, it went to PCs and coming back. What we see now 
since the 1990s is the starting with shrink wrap software, water-
fall models, and personal computers to what I would say is ser-
vices, agile programming, and the cloud.

Interlude: “Shrink wrap software” and  
“waterfall model”

Formerly customers went to a shop to buy software in a box. It 
came with a plastic wrap around it, that was the shrink wrap. 
And when they opened the shrink wrap they went into a con-
tractual agreement with the software company before even in-
stalling it. Then they took the disquettes home and installed it 
on their Personal Computer, if all went well had the software 
ready and started using it. The relationship with the company 
was mostly at this moment where the customer opened the box. 
And afterwards what they did with the software was mostly 
their own issue, unless people used illegal copies of the software 
and the companies came after this illegitimit use.

The waterfall model is a form of developing software. It came 
about in the 1960s. If you look at the history of sofware engi-
neering, there is always a battle of people who think software en-
gineering is a managing issue, that it is just breaking down tasks 
and managing them well, and others who think that it is a mat-
ter of experts building systems bottom-up. What we have seen 
in change is the waterfall model which was much more manage-
rial and top-down being questioned in the last 20 years by agile 
programming. Developers who propose a whole host of different 
methods which I am calling agile programming that would basi-
cally put the developers and the users at the center of software 
engineering. And finally with a shift of services we moved away 
from having a lot of processing done on our computers to the 
cloud – what will be elaborated in more detail below.

We did an exploratory study including interviews and conversa-
tions, analysis of industry white papers and legal and policy liter-
ature to understand the phenomenon we call the agile turn – the 
change of the environment that we live in and its great impact 
on the development of privacy, but also the corresponding kinds 
of protective technologies we can create. To give you a feeling 
about the excitement around shrink wrap let me refer to a video 

of the Windows 95 release party2, where people are dancing 
and celebrating the the new release of the Windows OS. Releas-
ing software was something that happened every two or three 
years. Apparently, in Microsoft literally after the release every-
body would get up and change their position in the offices in 
this very large company. Windows 95 was like such a big party, 
it was a big thing to release new software versions. But what we 
have seen today with services is that software developers can 
release software updates up to 50 times an hour, a day, what-
ever, depending on the company. So we can not party as much, 
something has fundamentally changed.

From shrink wrap software to services

I will start with the move from shrink wrap to services and fo-
cus on one or two incidents that provide some insight: There is 
this one statement, some people claim this was a note sent by 
Jeff Bezos to his employees in 2001 or 2002, where he basi-
cally said: “All the teams will henceforth expose their data and 
functionalities through service interfaces.” So he pushed all his 
Amazon’s workforce into creating interfaces for their databases 
and making their services available internally, but also externally, 
which could also be seen as the start of the Amazon cloud that 
we know today.

Another example, if we just go to the extreme – shrink wrap 
on the one side and services on the other is between Microsoft 
Word and Office 365 or Google Docs. Think about the difference 
in the experience: In the beginning you ran installed software on 
your machine and you were also maintaining your machine. Cus-
tomers hoped that the software in the box mapped their hard-
ware. This was not a trivial thing and a big headache for devel-
opers. Users had a lot of control. This was seen as a problem for 
many people, but not for geeks. Also, users paid in advance.

With services however, what we have is that we have no instal-
lation anymore, unless maybe installing your browser or an app 
which is much easier in comparison to what users had to do 
formerly. The update and maintenance of the code remains on 
the developer side, because the code remains where the devel-
oper is. There is no release party where developers have to let 
go off their “baby”. It actually sticks with them, they can con-
tinue to make changes to the code, they can always do updates. 
And with services what we have, also interesting for the users, is 
that they don’t have this much control. Everything they do can 
now be datified. Develeopers can basically see where the users 
are clicking, what services they are using, or how they are us-
ing the features.

But it also allows things like user collaboration. Formerly users 
sent Word documents, or Open Documents if using open source 
alternatives, through e-mails and then there were all sorts of 
versioning problems. This new environment basically allows col-
laboration to be much more easy.

What also changes is that you pay as you use. This is where of 
course the term “you pay with your data” comes in as well. For-
merly users didn’t pay with their data when they bought Micro-
soft Word, they paid for the license or got an illegal copy, but 
now users can basically pay per use or even try software before 

51FIfF-Kommunikation 1/19

#
FI

fF
K

o
n
1

8



moving it to the whole enterprise. So it’s a very big shift both for 
the users and the developers.

So if we look at what this whole shift means is that we have 
now a server-client model. That means that the transaction that 
was only at the moment of purchasing shrink wrap software is 
now throughout the use lifecycle, users are constantly in trans-
action with the company. We have bundled services, and we 
have licensing and pricing models that are basically based on 
use, which means intensified tracking to know who is using 
what and how. This is especially important, because often we 
talk about tracking as a problem of the advertisement world but 
we do not talk about it also as part of the service and licensing 
architectures. These are important little details.

So basically there were two different phases: production and 
use. What happened with the services is that developers start 
producing the software, and do not produce everything them-
selves. They integrate a bunch of services that have already ex-
isted somewhere. Then the users using the service,  for instance 
with a pay-per-use model on-going. While users are paying for 
the use of the software, the production is still going on. The pro-
duction and the consumption phases are collapsed, there is no 
separate production from use. Everything they use is integrated 
into how this software gets produced.

If you think for example of a website to create pictures, this web-
site might have some specific application features for uploading 
photos and filters. But the developers do not want to develop 
things like advertisement, authentication or payment themselves. 
So they integrate a third party service that allows payments for 
instance. The same with functionalities to locate pictures or use 
a social network for discussion, etc. Basically the service provider 
will integrate numbers of third services into the website. For the 
users it looks like they are interacting with one party, but in fact 
behind the surface they are interacting with a couple and hun-
dreds of service providers, which they mostly not not know all.

What’s also interesting is that this service model also applies to 
the developement process. The developers themselves use a 
number of services to develop software. Anywhere from team 
integration tools, to data brokers to get data about your us-
ers or analytics like Google Analytics to test your features, or 
for A/B-testing. You basically use a bunch of other services to 
even develop the service itself. So also these are hardly visible 
to the users. For example FullStory was a service that a website 
could integrate it to give the developers a complete replay of 
the users’ interactions in a video form. So this did not not just 
reveal clicks, but basically showed completely how users moved 
around the website, which services they used, what things they 
typed into the boxes that were in the forms, etc. We found that 
in the top one million sites we already had quite a few of the 
websites using this service. Colleagues at Princeton even wrote 
out about how they could actually see people’s logging creden-
tials and private information using FullStory.

The background why developers probably are integrating Full-
Story is to see if the users have problems with their services and 
where did they struggle with certain kind of interface elements. 
But it actually ends up being like a privacy nightmare. And it be-
comes very difficult to make these things visible to the users.

The agile turn

Another main change we see is the move from waterfall to ag-
ile programming.3 The waterfall model was basically a model 
of software engineering with discrete development-phases that 
come one after the other and finally lead to the final software 
programme. The company starts with a requirement analysis 
and specification. Software engineers go into the company to 
understand what the requirements of the system were or go to 
the environment where a system is going to be introduced. Then 
the requirements are turned into a specification. Afterwards they 
do architectural design and start implementing and integrating 
the software. Two or three years later the software is ready, and 
the engineers go back to the company who ordered the soft-
ware and start doing verification and testing to see that what 
was produced in the last years has anything to do with what the 
company originally wanted. Then engineers go into the mode of 
operation and maintenance.

Then it turned out that with this model roughly about two thirds 
of the projects failed. Failed meant that they either failed com-
pletely or they failed in terms of costs, they cost much, much 
more than it was estimated or it took much, much longer to de-
velop. So this model was not really working, especially from an 
economic perspective which is really important in my line of ar-
gument here. It also turned out that 60 % of software costs is 
due to maintenance and of that 60 % is adding new function-
ality to legacy software. So you can imagine that when service 
architectures came and the code could remain on the side of de-
velopers, the companies that were losing so much money and 
basically bleeding with these waterfall models were very happy. 
And so were the developers who claimed the Agile Manifesto.

Here are basically, in a very quick and unfair manner, the main 
principles of agile programming:

• Individuals and interactions over processes and tools: It is 
very interesting what gets left out here and how that actu-
ally impacts the practice of development: The process itself 
is gone.

• Working software over comprehensive documentation: If 
you think about the European General Data Protection Re-
gulation you see the conflict with its obligations on docu-
mentation.

• Customer collaboration over contract negotiation: It is very 
much about reducing costs, and there goes the requirements 
document.

• Responding to change rather than following a plan.

Of course, there are many different approaches of Agile Pro-
gramming. Another approach is called Extreme Programming 
which says a lot about getting things even faster and which is 
very focused on exhaustive testing.

What happens with the move to agile development methods is 
that testing becomes very central. So does user centricity or client 
centricity most of the times. Because we have services and we 
can constantly collect data about how features are being used, 

52 FIfF-Kommunikation 1/19

#
FIfFK

o
n
1

8



we can also do all sorts of testing using that data. Accordingly, it 
is no longer about testing the correctness of software but testing 
the interactions. Development is supposed to be in short itera-
tions. So in order to develop a photo album service, developers 
start with the uploading and then go feature by feature what and 
every step they iterate and test to see how the users are reacting. 
Another goal is simplicity, a main goal is re-use and modularity 
which means to break things down as much as possible.

Optimization

What we start getting as a result of all these developments is a 
feature based optimiziation. What we start seeing is that if soft-
ware development was a cost issue with services and with the 
kind of data we can collect, it comes completely out under the 
logic of optimization. So when Annette Mühlberg in this issue 
is talking about workers being put under the logic of optimiza-
tion or municipalities or health systems, we see also software 
developers are put under the logic of optimization and all the 
resources they use as well. That becomes possible because we 
have services and because we have agile methods.

With services you can capture the behavior of the users, in or-
der to constantly adjust the features, to know which are the fea-
tures that lead to maximizing profit. We can economically op-
timize while we are optimizing for example for clicks. But the 
tracking included in services is not limited to tracking the users. 
For example, when integrating a service into a website, there is 
a need to also track those services themselves. Developers need 
to know that the services are all functioning the way they should 
be, because their products are dependent on external parties for 
the services to run. There is a lot of tracking going on to make 
sure that the service ecosystem is functioning. Finally there are 
literally layers and layers of tracking to see how many resources 
are used, which services are working, user tracking and license 
tracking – we are seeing a whole sort of ecosystem of tracking 
and optimization that is going on.

Implications and externalities –  
optimization in practice

Finally I want to give an example in location-based services, 
Waze. Many people use Waze to reroute around traffic. It is 
similar to Google Maps, also owned by Google, but does not 
just give directions, but it tells you how to get there in the fast-
est way possible. Waze is symbolic of how location-based ser-
vices have changed with the move to services. Location services 
no longer just track and profile individuals to generate spatial in-
telligence, but they now leverage this information to manipulate 
users’ behavior and create ideal geographies that optimize space 
and time to their investors’ interest. So part of this development 
are population experiments using techniques like A/B testing 
that drive iterative design in order to ensure sufficient gain for 
most users while maximizing profits. Waze reroutes users even 
when there is congestion on a given path allowing these users 
to act with perfect selfishness. In some happy universe if every-
body could get as fast as possible from A to B, you would think 
this is a good thing. But it turns out, researches from Berkeley 
showed, that traffic apps might work for the indivdual, but they 

do so at the cost of making congestion worse over all. Waze also 
often redirects users off the highways through suburban neigh-
bourhoods that cannot sustain heavy traffic. So while it’s useful 
for drivers, it affects neighbourhoods by making streets busy, 
noisy and less safe.

Consequently, towns may need to fix and police roads more of-
ten. With such systems even when some users benefit, non-us-
ers and the environments they inhabit may bear the ill effects of 
optimization. So this underlines the point that actually the traffic 
engineers that looked at it show that if only a few users are us-
ing Waze they do get from A to B faster, but if everybody starts 
using Waze there is just chaos.

What are we proposing? Optimization systems have these ex-
ternalities and we have many, many reports that the companies 
do not react when people say: Look, my neighbourhood is de-
stroyed, because Waze is rerouting this traffic. Annette Mühl-
berg had a lot of examples of workers getting weird messaging 
from their bosses, because they took pauses, etc. There are all 
these externalities and the companies will not take them seri-
ously. So could we maybe do something else? And we decided 
to be inspired by the users of these systems for exploring new 
ways to deal with these things. Namely we found out that peo-
ple who live in these suburban areas that do not want the Waze 
traffic will start reporting road blocks on their streets so that 
Waze would reroute to another road.

So here are some examples: In one of them somebody did a vir-
tual road block. Apparently even the police has a problem, be-
cause people can log for example whether there is a police con-
trol and speed limit, etc. So they started over-populating Waze 
so that people do not have the correct information. There were 
some researchers in Israel that created a bunch of ghost ac-
counts and managed to make it look like there is a lot of traffic 
on the freeway, got all the cars rerouted and then had the free-
way to themselves. Our idea is that we want to be inspired by 
how these users have been looking at manipulating optimization 
systems, re-optimize themselves and the environments that they 
live in. We want to design tools that actually are effective and 
allow them to do so in a much more successful way. Basically, in 
computer science terms what we are saying is optimization sys-
tems are machine learning systems at this point. What we can 
do is use adverserial machine learning to re-optimize the condi-
tions of the users and their environments when they are hit hard 
by optimization systems.

We published a paper on what we mean by POT and how to de-
velop them, but basically we propose that you think of a benefit 
function.4 Let’s say Waze has a benefit function for all the people 
including non-users and the environment. The people who ben-
efit the most are on the top-hill, they are happy users and then 
the ones who are messed up when cars start spying into their 
yards, because it is a road that shouldn’t have that much traf-
fic. They are the ones that are not getting a very big benefit. We 
think about what kind of inputs we can do to change this curve, 
the outcome of this optimization system. The question is what 
should it be changed to? There we have different strategies.

And really Waze is not the only place this happens. For example 
Pokémon Go, if you are into collecting Pokémons it turns out 

53FIfF-Kommunikation 1/19

#
FI

fF
K

o
n
1

8



that if you are in a very poor neighbourhood, if you are in rural 
areas, you are not gonna get a lot of Pokémons. So what the us-
ers have been doing is spoofing their GPS so they go to main cit-
ies. They even changed the map indicators in Open Street Map 
to make it look like there are things like water sources, which 
apparently will lead to spawning more Pokémons. Uber driv-
ers have been known to turn off their apps when a big event is 
happening so that they can induce search prices so that can be 
paid well. We have been looking at credit scoring outcomes and 
asked if you could change for example the amount of money 
you ask for – in order to more likely to get a credit from the 
bank. You can read more about our empirical work in the refer-
enced paper.

Conclusion: The cost of optimization

What is at stake with all this? Agile software engineering seems 
like an efficient way to create software. But what is at stake is 
that all of a sudden all of our lifes are put under the logic of op-
timization. All of the social activities that are touched with ser-
vices are put under the logic of optimization. Think about what 
it means to put all sorts of social things into a logic of logistics 
and control. Also politically, often what we get is based on the 
idea that the outcome is is in some way “optimal” and therefore 
we are supposed to desire these systems.

There is a lot happening there with this switch from information 
systems to optimization systems. Trying to summarize what has 
changed we can say: Not only we went from shrink wrap to ser-
vices and software engineering has changed, but the quality of 
the systems has changed. Whereas information systems are fo-
cused on storage, processing, transport of information and or-
ganize knowledge and are thus about knowing, knowledge and 
reasoning, optimization systems are not about knowing at all. 
They basically leverage the data that they gather, to not only 
understand the world, but optimizing it.

Optimization systems seek to extract economic value through the 
capture and manipulation of people’s activities and environments. 
All of these services constantly capture your activities, they cap-
ture information about our environments. They don’t care to 
know, they care to manipulate in order for improving the eco-
nomic income. Consequently optimization systems in comparison 
to information systems treat the world not as a static place to be 
known, but one to sense and co-create. This is very, very differ-
ent kind of systems. The kind of problems that we can see with 
optimization systems have been on the headlines, they have been 
spoken about by academics and activists for a long time:

• Social sorting – we hear a lot about algorithmic discrimina-
tion, but originally academics started talking about this pro-
blem in the 1990s;

• mass manipulation – we hear about Cambridge Analytics 
and the elections;

• asymmetrical concentration of powers – we have the 
GAFAM: Google, Apple, Facebook, Amazon, and Microsoft;

• absolute majority dominance – where minority users get 
hunted down almost and there’s very little done to protect 
the minorities.

So these are the ways we talk about these things in general, but 
if we look at software engineering we can talk about the phe-
nomenons in terms of optimization.

Software engineering has become data-centric and it functions 
under the logic of optimization. What can we say about these 
things in terms of optimization systems? We argue that optimi-
zation systems come with externalities. There is no optimization 
system without these problems. There is no “good” optimiza-
tion goal without those problems. Optimization systems always 
come with externalities. This is not a complete list, but here is a 
start: They disregard non-users for sure, see the examples given 
above. They disregard environments that they function in. They 
make use of them.

There is an optimization curve and some people are optimal and 
some people are not. Developers have to explore the world, 
they sometimes have to try new things out which might lead 
to exploit users to explore things. The costs and risks associated 
with that exploration mostly falls on the shoulders of the users.

Anmerkungen
1  Der vorliegende Vortrag basiert auf zwei Papieren, in denen sich wei-

terführende Referenzen finden: Gürses S und Van Hoboken J (2017) 

Privacy after the agile turn. In The Cambridge Handbook of Consumer 

Privacy, 1–29. Cambridge Univ. Press und Overdorf R, Kulynych B, 

Balsa E, Troncoso C und Gürses S. POTs (2018) Protective Optimizati-

on Technologies. arXiv:1806.02711 [cs], 7. Juni 2018. http://arxiv.org/

abs/1806.02711.

2  https://www.youtube.com/watch?v=84c7mRP7PLw

3  If you believe in one of these things I am going to do a bad job in 

explaining your color of agile development. I am very, very sorry. I am 

just giving a very broad overview.

4  https://arxiv.org/abs/1806.02711

Seda Gürses ist Informatikerin, Post-Doc am COSIC/ESAT im Department of Electrical 
Engineering der KU Leuven, Belgien, und forscht am Center for Information Technology 
and Policy, Princeton University. Sie arbeitet u. a. zu den Themen Privatsphäre in sozialen 
Online-Netzwerken und der Rolle von subjektiven Vorstellungen im IT-Design.

Seda Gürses

54 FIfF-Kommunikation 1/19

#
FIfFK

o
n
1

8

http://arxiv.org/abs/1806.02711
http://arxiv.org/abs/1806.02711
https://www.youtube.com/watch?v=84c7mRP7PLw
https://arxiv.org/abs/1806.02711

	_Ref535930761
	_1fob9te
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_rsvqiqqjvcs3
	_GoBack
	parent-fieldname-title
	parent-fieldname-description
	_GoBack

